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LETTER TO THE EDITOR 

First-order phase transition in the two- and three-dimensional 
R P + '  and CP-' models, in the large-n limit 

H Kunz and G Zumbach 
Institute de Physique Thtorique, Ecole Polytechnique Ftd6ral de Lausanne, PHB-Ecublens, 
CH-1015 Lausanne. Switzerland 

Received 28 July 1989 

Abstract. Solving the lattice WP"-' and CP"- '  models in the large-n limit, we show that 
they undergo a first-order phase transition for dimensions greater than or equal to two. 
In the latter case, although there is no long-range order, we argue that at least in the RP"-' 
model, the transition corresponds to a condensation of defects. 

Non-linear U models have been thoroughly studied in field theory, especially in the 
two-dimensional case, because of their analogy with four-dimensional gauge theories. 
Their vectorial version ( X U ,  Heisenberg) is also quite well known in statistical 
mechanics. On the other hand, their matrix form, also called chiral or Grassmannian 
non-linear U models, is comparatively less well understood. Some of them describe 
liquid crystals [ 1 , 21, whereas others have been introduced to analyse Anderson localisa- 
tion [3]. In the three-dimensional case, conflicting conclusions have been reached 
concerning the nature of the phase transition they undergo. Monte Carlo computations 
indicate a first-order transition for the RP2 model [4,5] or C P 3  and CP4 models [ 5 ] ,  
in agreement with a mean-field theory, whereas expansions in the space dimension 
4 -d  [6] or d -2  [7], or in l / n  [8], all consistently give a continuous transition. We 
have reconsidered the lattice version of the simplest of such models, the RP"-' and 
CP"-' models, in the large-n limit. We find a first-order transition in three dimensions. 
More surprisingly, this first-order transition still occurs in the two-dimensional case, 
with vanishing order parameter. However, we argue that this transition should be 
defect mediated, at least in the RP"-' case. We also discuss briefly the possible origin 
of the failure of the d -2  expansion. 

Consider a d-dimensional lattice of N sites, with periodic boundary conditions. 
The Hamiltonian of the RP"-' model is defined by 

H = - n  C l a ( x )  * u ( x + e , ) l 2  p = l  . . .  d 
X . P  

where a ( x )  is a real n-component vector of unit length, and e, is a unit lattice vector 
in the d&ection p. In the CP"-' model, the Hamiltonian has the same form, but now 
each vector a ( x )  has n complex components and 

n 

a ( x ) 2 =  c a , ( x ) * a , ( x )  = 1 
, = I  
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Besides a global symmetry group O ( n )  (respectively U(n)) in the RP"- '  model (respec- 
tively CP"-'), these Hamiltonians are invariant under a local gauge group Z2 (respec- 
tively U( 1)) in the RP"- '  case (respectively CY-'). The RP2 model is a lattice version 
of the Meier-Saupe model for the nematic-isotropic transition in liquid crystals, and 
the CP' model is equivalent to the classical Heisenberg model. 

Let us now look at the partition function of the RP"- '  model 

Z = n d a ( x ) 6 ( a ( x ) 2 -  l)exp(pn I x  x, CL 

Introducing 'gauge fields' A, (x),  this can be rewritten as 

Z = C t e  f l d a ( x )  6(x)  6 (a (x )2 -1 )  n dA,(x) I. I x., 
x exp( - p n  (a,@ + A , O ) ~ ( X )  

X., 

where ( a , a ) ( x )  = a ( x  + e,) - a ( x ) .  Using the identity 
a2 

6(  a2 - 1) = p" I dt  exp[-pn(a + i t ) (  a2 - l)]  
2 T  --CO 

a being an arbitrary real number, we can put it in the useful form 

(3) 

where 

and 

C (  n, p )  = pnd +f (d  - n +2)  l n ( p n / r )  - In 2. ( 7 )  
Defining A,(x) = A+ 6A,(x), we then choose A and a such that %'(A,, t )  is extremum 
at (A, 0), ensuring that when n tends to infinity, the partition function will be dominated 
by the saddle points of the integrand. In the thermodynamic limit, these points can 
be usefully parametrised by 

where Ai=4p/d  and A is either 0 (trivial solution) or the postive solution of the 
saddle point equations 

1 1 4  &"=-+- 
A A i  

z = g(A) .  

We define g(A)  as the inverse of the function 

(9) 
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where A < 
zero mode in the Hamiltonian. We use the notation 

= f ( d )  and g(A)  = d when A 3 A. This last condition comes from the 

The pressure in the n =a limit can be expressed as 

with 
f = i n f [ - l - - y + l n A +  1 A* d 

( ‘ 2 )  2 Ao 

In three dimensions o r  more, an analysis of the saddle point equation shows that when 
A o < 2 / d ,  there is no solution A>O. When A o > 2 / d  a non-vanishing solution A+ 
appears with 

and z = d. When A. = m, another solution A’ bifucates from the trivial one A = 0 
and for 2 / d  < A o < m  these two solutions exist, but the solution A +  has a larger 
pressure than A’. Finally, a comparison of the pressure shows that the trivial solution 
A = 0 is the stable one until a critical temperature T,(AZ> 2 / d )  is reached, above which 
the solution A, is the stable one (see figure 1). A similar result holds in two dimensions, 
where A = 03 (see figure 2).  Thus, we see that A and d A / d p  jump at T,, so that the 
transition is first order in temperature, with a jump in the internal energy of 1.3 in 
d = 3 and 0.45 in d = 2. In  one dimension, we recover the continuous transition 
discussed by Hikami er a1 [ 9 ] .  When d + 03, but pd is fixed, we get the mean-field 
results. For the Q:P”-’ model, to leading order in n, the results are the same. In fact, 
we have the following relationship for the pressure of the two models: 

P(Q:P”, P )  =p(RP“,  P / 2 ) .  (16) 

For this last model, our results disagree with those obtained for its field theoretical 

hQ 
Figure 1. The d = 3 case: the full curve (respectively, 
short broken curve) gives the stable (respectively, 
unstable) solution A and the long broken curve 
denotes the order parameter M, both as a function 
of A,. 

0.95 1.00 1.05 

hQ 
Figure 2. The d = 2 case: the full curve (respectively, 
short broken curve) gives the stable (respectively 
unstable) solution A, and the long broken curve 
denotes the ratio d / z ,  both as a function of A,. 
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point A = 0, recovering the result of the usual vectorial model in the n = cc limit. But 
we have seen that at least in the lattice version, A = 0 is not a saddle point. 

In order to gain further insight into the transition, we can also compute the associated 
order parameter. The local order parameter m ( x )  can be chosen as 

ncr:(x) - 1 
n - 1  

m ( x )  = 

We can compute the correlation functions of these local order parameters, in the 
absence of a symmetry-breaking field. To leading order in l l n ,  we find that 

2 
(“X)m(Y) )=n(n -1 )  [ M  + W x  - Y ) 1 2  

P < P C  

otherwise. -T- 
On the other hand 

Thus we see that in three dimensions or more, we have long-range order below T,, 
the average value of the order parameter being given by 

m )  = (-) 2 ”’( 1 - 5) n ( n  - 1 )  
and since z = d for P > P E ,  the correlation function in the low-temperature phase 
decays as l /rd-2.  

From the previous analysis of the saddle point equation, it follows that the order 
parameter makes a jump at T, (see figure 1).  Its value extrapolated to n = 2 is 0.29, 
compared with the Monte Carlo result 0.33 [4]. On the other hand, near two dimensions 
there is a temperature T* = O( d - 2) such that for 0 < T < T* we have a non-vanishing 
order parameter, but for T* < T < T, the order parameter vanishes. This order para- 
meter vanishes continuously at T*, with a critical exponent /3 = 1.  This result just 
corresponds to the prediction of the d - 2 expansion in the n + cc limit. But we think 
that this is incorrect and as soon as n will be finite, the order parameter will be very 
small but positive between T* and T, because of the phase transition occurring at T, 
which is two dimensional in nature. Indeed in two dimensions, equations (9), (10)  
and (18) give M = 0, i.e. no long-range order, but an exponential decay of the correlation 
functions. The correlation length, however, is huge, since z -- d, as seen in figure 2. 
This suggests a topological phase transition in two dimensions. To confirm this, we 
have computed an analogue of the Wilson loop, namely 

C ( L ) = (  n 4 - Y )  * a ( x + e , )  
x,x+e+)c L 

when L is a loop on the lattice. We find that when n = 0;) 

where ILI is the perimeter of the loop and 
y = In d A:/ A’. (23) 
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The change from an area-law decay (in the strong form when n = C O )  at high tem- 
peratures to a perimeter law is indicative of a topological phase transition. All these 
results remain valid for the CP" model. What is, however, the physical mechanism 
behind this transition? We think that it is a condensation of defects like in the 
Kosterlitz-Thouless transition, at least for RP"-'. Indeed, such models possess 
topologically stable point defects in two dimensions. This comes from the fact that 
Ill (RP")  = Z2 if n 3 2. This means that, contrary to vortices, there are only defects of 
charge 1, but that two defects of charge 1 can annihilate at least when n 3 3 (since 
I12(RP") = 0 when n 3 3) .  In the liquid crystal case ( n  = 3), these defects correspond 
to disclinations of number 4, in the standard terminology [12]. Note, however, that, 
in this case, we should also have textures (or instantons) since I12(RP2)=Z. The 
energy of an isolated defect grows logarithmically with the size of the system and two 
defects attract each other with a logarithmic potential. If we use, therefore, the familiar 
energy-entropy balance argument [ 131, we conclude that the low-temperature phase 
should be a condensate of pairs of such defects, which should remain isolated at high 
temperatures. A more detailed theory along the lines sketched here would be needed 
to analyse the nature of this transition; our results suggest that it is of first order. There 
is, however, one essential difference between the RP"- '  and CP-' manifolds. The 
CP"-' models do not possess topologically stable point defects ( I I , ( @ P " )  = 0), but 
only textures, called instantons in field theory ( I l , (@P")  = Z ) ,  so that the physical 
origin of the two-dimensional transition when n is large, remains mysterious to us in 
this case. The failure of the d - 2  expansion to detect such transitions is related.to the 
fact that, in this approach, local coordinates are used on the sphere, which do not see 
that in the projective models opposite points on the sphere have to be identified. 
Finally, one can wonder if these first-order transitions remain stable when we consider 
the first correction in l / n  to the pressure. This is what we have done for the RP"- '  
case. We find to this order that 

pp=ppm--  dO[lnr(e)+Trln R ( e ) ]  (24) 2 'I 
where RwY(O) is the matrix 

with 
r 

I L( e ' )  = 
A'[ z - I;, COS e:] [  z - I;, COS( e: + e,)] ' 

These corrections do not introduce, however, a qualitative change in the transition. 
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